PD - 50062A GA75TS120U "HALF-BRIDGE" IGBT INT-A-PAK Ultra-FastTM Speed IGBT Features VCES = 1200V • Generation 4 IGBT technology • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • Very low conduction and switching losses • HEXFRED™ antiparallel diodes with ultra- soft recovery • Industry standard package • UL approved VCE(on) typ. = 2.1V @VGE = 15V, IC = 75A Benefits • Increased operating efficiency • Direct mounting to heatsink • Performance optimized for power conversion: UPS, SMPS, Welding • Lower EMI, requires less snubbing Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C ICM ILM IFM VGE VISOL PD @ TC = 25°C PD @ TC = 85°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector Current ➀ Peak Switching Current ➁ Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range Max. Units 1200 75 150 150 150 ±20 2500 390 200 -40 to +150 -40 to +125 V A V W °C Thermal / Mechanical Characteristics Parameter RθJC RθJC RθCS www.irf.com Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink Mounting Torque, Case-to-Terminal 1, 2 & 3 ➂ Weight of Module Typ. Max. — — 0.1 — — 200 0.32 0.35 — 4.0 3.0 — Units °C/W N. m g 1 4/24/2000 GA75TS120U Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units Conditions 1200 — — VGE = 0V, I C = 1mA — 2.1 3.1 VGE = 15V, IC = 75A — 1.9 — V VGE = 15V, IC = 75A, TJ = 125°C VGE(th) Gate Threshold Voltage 3.0 — 6.0 VCE = 6.0V, IC = 750µA -11 — mV/°C VCE = 6.0V, IC = 750µA ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — gfe Forward Transconductance ➃ — 107 — S VCE = 25V, IC = 75A ICES Collector-to-Emitter Leaking Current — — 1.0 mA VGE = 0V, VCE = 1200V — — 10 VGE = 0V, VCE = 1200V, TJ = 125°C VFM Diode Forward Voltage - Maximum — 2.3 3.3 V IF = 75A, V GE = 0V — 2.1 — IF = 75A, VGE = 0V, TJ = 125°C IGES Gate-to-Emitter Leakage Current — — 250 nA VGE = ±20V V(BR)CES VCE(on) Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Dynamic Characteristics - TJ = 125°C (unless otherwise specified) Qg Qge Q gc td(on) tr td(off) tf Eon Eoff (1) Ets (1) Cies Coes Cres t rr I rr Q rr di(rec)M/dt 2 Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — Typ. 570 96 189 109 119 392 402 11 20 31 12815 570 110 174 107 9367 1491 Max. Units Conditions 854 VCC = 400V 144 nC IC = 85A 283 TJ = 25°C — RG1 = 15Ω, RG2 = 0Ω, — ns IC = 75A — VCC = 720V — VGE = ±15V — mJ Inductor load — 45 — VGE = 0V — pF VCC = 30V — ƒ = 1 MHz — ns IC = 75A — A RG1 = 15Ω — nC RG2 = 0Ω — A/µs VCC = 720V di/dt = 1300A/µs www.irf.com GA75TS120U 80 F o r b o th : D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te d riv e a s s p e c ifie d LOAD CURRENT (A) 70 60 P o w e r D is s ip a tio n = 83 W 50 S q u a re w a v e : 60 % of ra ted vo ltag e 40 30 I 20 Id e a l d io d e s 10 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 125 ° C TJ = 25 °C V = 15V 80µs PULSE WIDTH GE 10 1.0 1.5 2.0 2.5 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C, Collector-to-Emitter Current (A) 1000 I C , Collector Current (A) 1000 100 TJ = 125 °C 10 TJ = 25 °C 1 V = 25V 80µs PULSE WIDTH CE 0.1 4.0 5.0 6.0 7.0 8.0 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 GA75TS120U 80 3.0 V = 15V 80 us PULSE WIDTH VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) GE 60 40 20 0 25 50 75 100 125 150 IC =150 A IC = 75 A 2.0 37AA I C= =37.5 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) TC , Case Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature T he rm al R esp on se (Zth JC ) 1 D = 0 .50 0.1 0.2 0 0 .1 0 0.05 0 .02 0 .01 PDM SING LE PU LS E (TH ER M AL RE SP O N S E) t 1 t2 Notes: 1. Duty factor D = t 1 / t 2 0.01 0.0001 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 10 100 A 1000 t 1 , R e ctan gula r Pulse D uratio n (se c) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com GA75TS120U VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 20000 15000 10000 5000 20 VGE , Gate-to-Emitter Voltage (V) 25000 10 10 5 0 100 0 VCE , Collector-to-Emitter Voltage (V) 100 V CC = 720V V GE = 15V TC 125°C 25 °C J== I C = 75A 35 30 25 10 20 30 40 RG , Gate Resistance (Ohm) ( Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 400 600 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) 40 200 Q G , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 45 VCC = 400V I C = 75A 15 0 1 85 A 50 RG1 =Ω 15Ohm R ;RG2 = 0 Ω G =15 VGE = 15V VCC = 720V I C = 150 A IC = 75 A I =37.5 37AA C= 10 1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 GA75TS120U 200 70 I C , Collector Current (A) Total Switching Losses (mJ) RG R = 15Ohm G1=15Ω;R G2 = 0 Ω T 150 ° C J == TC 125°C 60 VCC = 720V VGE = 15V VGE = 20V T J = 125 o C VCE measured at terminal(Peak Voltage) 150 50 40 100 30 20 50 10 SAFE OPERATING AREA 0 0 0 20 40 60 80 100 120 140 0 160 200 400 600 800 1000 1200 1400 VCE , Collector-to-Emitter Voltage (V) I C , Collector Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Reverse Bias SOA 16000 1000 I F = 7 5A I F = 37 A 12000 Q R R - (nC ) In sta n ta n e ou s F o rw a rd C u rre n t - I F (A ) I F = 1 50 A 100 8000 TJ = 1 2 5 °C 4000 TJ = 2 5 °C VR = 72 0 V T J = 12 5 °C T J = 25 °C 10 1.0 1.4 1.8 2.2 2.6 3.0 F o rw a rd V o lta ge D ro p - V FM (V ) Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 0 500 1000 1500 d i f /dt - (A /µs) 2000 Fig. 14 - Typical Stored Charge vs. dif/dt www.irf.com GA75TS120U 200 250 VR = 7 2 0V T J = 1 25 °C T J = 2 5°C 160 I F = 1 50 A I F = 3 7A I F = 7 5A I F = 3 7A 120 IRRM trr - (n s) - (A) 200 I F = 15 0A I F = 7 5A 80 150 40 VR = 72 0 V T J = 12 5 °C T J = 25 °C 100 500 1000 1500 d i f /dt - (A /µs) 2000 Fig. 15 - Typical Reverse Recovery vs. dif/dt www.irf.com 0 500 1000 1500 di f /d t - (A/µ s) 2000 Fig. 16 - Typical Recovery Current vs. dif/dt 7 GA75TS120U 90% Vge +Vge Vce Ic 9 0 % Ic 10% Vce Ic 5 % Ic td (o ff) tf Eoff = t1 + 5 µ S V c e ic d t t1 ∫ Vce Ic dt Fig. 17a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 17b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic trr id t Icddt tx ∫ +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt E o n = VVce t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 17c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 VVd d idIc d t dt t3 t4 Fig. 17d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com GA75TS120U V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 17e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 600V 4 X IC @25°C 0 - 600V 50V 6000µ F 100 V Figure 18. Clamped Inductive Load Test Circuit www.irf.com Figure 19. Pulsed Collector Current Test Circuit 9 GA75TS120U Notes: ➀ Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ➁ See fig. 17 ➂ For screws M5x0.8 ➃ Pulse width 50µs; single shot. Case Outline — INT-A-PAK Dimensions are shown in millimeters (inches) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 4/00 10 www.irf.com