SHARP PC928

PC928
Shortcircuit Protector Circuit
Built-in OPIC Photocoupler Suitable
for Inverter-Driving IGBT
PC928
❈ TÜV ( VDE 0884 ) approved type is also available as an option.
■ Outline Dimensions
■ Features
1. Built-in IGBT shortcircuit protector circuit
2. Built-in direct drive circuit for IGBT drive
14
13
(Peak output current ... I O1P , I O2P : MAX. 0.4A)
3. High isolation voltage (Viso : 4 000Vrms )
12 11 10
9
8
6
7
(Unit : mm)
6.5
PC928
4. Half lead pin pitch (p=1.27 mm) package type
5. Recognized by UL, file NO. E64380
Primary
side mark
1
2
3
4
5
■ Application
9.22
0.35
14 - 0.6
0.26
7.62
3.5
1. IGBT control for inverter drive
12 - 1.27
1.0
1.0
10.0
Internal connection diagram
14
12
11
10
9 8
(Ta=Topr unless otherwise specified)
Parameter
Symbol
Rating
*1
Forward current
IF
25
Input
Reverse voltage
VR 6 (Ta = 25˚C)
Supply voltage
VCC
35
O1 output current
IO1
0.1
*4
IO1P
0.4
O1 peak output current
IO2
O2 output current
0.1
*4
IO2P
0.4
O2 peak output current
Output O1 output voltage
VO1
35
*2
Power dissipation
PO
500
Overcurrent detecting voltage VC
VCC
Overcurrent detecting current
IC
30
Error signal output voltage VFS
VCC
Error signal output current IFS
20
*3
Total power dissipation Ptot
550
*5
Isolation voltage
Viso
4 000
- 25 to + 80
Operating temperature
Topr
Storage temperature
Tstg - 55 to + 125
Soldering temperature
Tsol 260 (for 10 sec)
Unit
mA
V
V
A
A
A
A
V
mW
V
mA
V
mA
mW
Vrms
˚C
˚C
˚C
Constant
voltage circuit
■ Absolute Maximum Ratings
13
1
2
IGBT protector
circuit
Interface
Amp.
3
4
1
2
3
4
5
6
7
Anode
Anode
Cathode
NC
NC
NC
NC
8
9
10
11
12
13
14
FS
C
GND
O2
O1
VCC
GND
Terminals 4 to 7 :
Shortcircuit in element
5
6
7
* "OPIC" (Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signal processing
circuit integrated onto a single chip.
Operation truth table is shown on the next page.
*1, 2, 3 Decrease in the ambient temperature range of the Absolute Max. Rating : Shown in Figs. 1 and 2.
*4
Pulse width<=0.15 µs, Duty ratio=0.01
*5
40 to 60% RH, AC for 1 minute, Ta=25˚C
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
PC928
■ Electro-optical Characteristics (1)
Parameter
Input
Forward voltage
Output
Reverse current
Terminal capacitance
Symbol
VF1
VF2
IR
Ct
Operating supply voltage
VCC
O1 low level output voltage
VO1L
O2 high level output voltage
VO2H
O2 low level output voltage
O1 leak current
VO2L
I O1L
High level supply current
ICCH
Low level supply current
ICCL
*7
Isolation resistance
"Low→High" propagation delay time
"High→Low" propagation delay time
Rise time
Fall time
Instantaneous common mode rejection
voltage "Output : High level"
Instantaneous common mode rejection
voltage "Output : Low level"
Response time
Transfer characteristics
"Low→High"
threshold input current
IFLH
RISO
tPLH
tPHL
tr
tf
CMH
CML
(Ta=Topr unless otherwise specified)
Conditions
Ta = 25˚C, IF = 20mA
Ta = 25˚C, I F = 0.2mA
T a = 25˚C, V R = 4V
Ta = 25˚C, V = 0, f = 1kHz
Ta = - 10 to60˚C
VCC1 = 12V, VCC2 = - 12V
IO1 = 0.1A, IF = 10mA
*8
VCC = VO1 = 24V, IO2 = - 0.1A
IF = 10mA
*8
VCC = VO1 = 24V, IO2 = 0.1A, IF = 0mA *8
Ta = 25˚C, VCC = VO1 = 35V, IF = 0mA *8
Ta = 25˚C, VCC = VO1 = 24V, IF = 10mA *8
VCC = VO1 = 24V, IF = 10mA *8
Ta = 25˚C, VCC = VO1 = 24V, IF = 0mA *8
VCC = VO1 = 24V, IF = 0mA
*8
Ta = 25˚C, VCC = VO1 = 24V
*8
VCC = VO1 = 24V
*8
Ta = 25˚C, DC500V, 40 to60% RH
Ta = 25˚C, VCC = VO1 = 24V
RG = 47Ω , CG = 3 000pF, I F = 10mA
*8
Ta = 25˚C, VCC = VO1 = 24V, IF = 10mA
VCM = 600V( peak ) , ∆ VO2H = 2.0V *8
Ta = 25˚C, VCC = VO1 = 24V, IF = 0mA
VCM = 600V( peak ) , ∆ VO2L = 2.0V *8
MIN.
0.6
15
15
TYP.
1.2
0.9
30
-
MAX.
1.4
10
250
30
24
Unit
V
V
µA
pF
V
V
Test circuit
-
-
0.2
0.4
V
(1)
20
22
-
V
(2)
2.0
500
17
19
18
20
7.0
10
2.0
2.0
0.5
0.5
V
µA
mA
mA
mA
mA
mA
mA
Ω
µs
µs
µs
µs
(3)
(4)
1.2
10
11
1.0
4.0
0.6
5 x 1010 1 x 1011
1.0
1.0
0.2
0.2
- 1 500
-
-
V/ µ s
1 500
-
-
V/ µ s
■ Truth Table
ON
OFF
C Input/output
Low level
High level
Low level
High level
O2 Output
High level
Low level
Low level
Low level
FS Output
High level
Low level
High level
High level
(6)
(5)
-
(8)
(7)
*6 When measuring output and transfer characteristics, connect a bypass capacitor (0.01 µ F or more) between Vcc 13 and GND 14 near the device.
*7 I FLH represents forward current when O 2 output goes from "Low" to "High".
*8 FS=OPEN, VC =0V
Input
-
For protective operation
PC928
*9
*9
Protective output Overcurrent
detection
■ Electro-optical Characteristics (2)
*10
Parameter
Overcurrent detecting voltage
Symbol
VCTH
Overcurrent detecting voltage
hysteresis width
VCHIS
O2 "High→Low" delay time
at protection from overcurrent
O2 fall time at protection
from overcurrent
O2 output voltage at protection
from overcurrent
tPCOHL
tPCOtf
VOE
Error signal output
*9
(Ta=Topr unless otherwise specified)
Conditions
Ta = 25˚C, IF = 10mA
VCC = VO1 = 24V, RG = 47Ω
CG = 3 000pF, FS = OPEN
MIN. TYP. MAX.
VCC - VCC - VCC 6.5
6.0
5.5
1
2
3
Unit
V
Test circuit
(9)
V
Ta = 25˚C
VCC = VO1 = 24V, IF = 10mA
CG = 3 000pF, RG = 47Ω
CP = 1 000pF, RC = 1kΩ
FS = OPEN
-
4
10
µs
2
5
-
µs
-
-
2
V
(10)
(13)
Low level error
signal voltage
VFSL
Ta = 25˚C, IF = 10mA, IFS = 10mA
VCC = VO1 = 24V, RG = 47Ω , C G = 3 000pF,
C = OPEN
-
0.2
0.4
V
(11)
High level error
signal current
IFSH
Ta = 25˚C, I F = 10mA, VFS = 24V,
VCC = VO1 = 24V, RG = 47Ω , C G = 3 000pF,
VC = 0V
-
-
100
µA
(12)
-
1
5
µs
20
35
-
µs
Error signal "High→Low"
delay time
tPCFHL
Error signal output pulse width
∆ tFS
Ta = 25˚C, RFS = 1.8kΩ
VCC = VO1 = 24V, IF = 10mA
CG = 3 000pF, RG = 47Ω
CP = 1 000pF, RC = 1kΩ
(14)
*9 When measuring overcurrent, protective output and error signal output characteristics, connect a bypass capacitor (0.01 µ F or more) between VCC 13 and GND 14 near the device.
*10 VCTH represents C-terminal voltage when O 2 output goes from "High" to "Low".
Precautions for Operation
1. It is recommended that a capacitor of about 1000pF is added between C-terminal and GND in order to prevent
malfunction of C-terminal due to noise. In the case of capacitor added, rise of the detecting voltage is delayed.
Thus, use together a resistance of about 1k Ω set between Vcc and C-terminal.
The C-terminal rise time varies with the time constant of CR added. Make it clear before use.
2. The light-detecting element used for this product is provided with a parasitic diode between each terminal and GND.
When a terminal happens to reach electric potential lower than GND potential even in a moment, malfunction
or rupture may result. Design the circuit so that each terminal will be kept at electric potential lower than the
GND potential at all times.
PC928
■ Test Circuit Diagram
(2)
13
1 2
↑ IF
12
11
PC928
V VO1L ↑
13
1 2
IO1 V
CC1
↑ IF
VCC2
14 10
12
11
PC928
8
(4)
13
1 2
↑ IF
12
11
PC928
14 10
13
1 2
VCC
↑ IF
V VO2L ↑ IO2
12
9
8
(6)
13
1 2
↑ IF
variable
12
11
PC928
14 10
A
I CC
13
1 2
VCC
↑ IF
V VO2
12
VCC
11
PC928
14 10
9
3
VCC
14 10
3
8
(5)
A I O1L
11
PC928
9
3
VCC
9
3
8
(3)
IO2
V VO2H
14 10
9
3
↑
(1)
9
3
8
8
13
(7)
A
SW
B
1 2
12
11
PC928
14 10
VCC
13
t r = t f = 0.01 µ s
VIN Pulse width : 5 µ s
Duty ratio=50%
9
3
(8)
1 2
V VO2
8
+
12
RG
11
PC928
14 10
VCC
CG
VOUT
9
3
8
VCM
VCM (Peak)
50%
V IN waveform
VCM waveform
GND
CMH , V O2 waveform
SW at A, I F = 10mA
VO2H
tpHL
tpLH
90%
∆ VO2H
50%
10%
VOUT waveform
∆ VO2L
tf
tr
VO2L
GND
CM L , V O2 waveform
SW at B, I F = 0mA
(9)
(10)
13
1 2
12
11
PC928
14 10
↑ IF
3
9
8
RG
V VOUT
13
1 2
VCC
CG
V VCTH
12
11
PC928
14 10
↑ IF
3
9
8
RG
VCC
V VOE
CG
CP
VC
RL
PC928
■ Test Circuit Diagram
(11)
(12)
13
1
2
13
1
12
RG
PC928
RG
9
V VFSL
11
↑ IF
CG
14 10
3
12
VCC
11
↑ IF
2
↓ IFS
PC928
14 10
IFSH
8
(13)
VFS
9
3
8
VCC
CG
A
(14)
13
1
tr = tf = 0.01µ s
VIN Pulse width : 25 µ s
Duty ratio=25%
2
13
1
12
RG
VCC
11
PC928
14 10
3
9
CG
V VOUT
RC
CP
tr = tf = 0.01µ s
VIN Pulse width : 25 µ s
Duty ratio=25%
RC
12
RG
11
14 10
9
V
8
IF
(Input current)
t pCOTF
90%
50%
t pCOHL
VOE
10%
VO2
(O2 output voltage)
90%
C
(Detecting terminal)
Error detecting threshold voltage (V CTH )
10%
∆ t FS
t pCFHL
FS
(Error signal output)
50%
VCC
CG
PC928
3
8
2
50%
RFS
PC928
Fig. 1 Forward Current vs. Ambient
Temperature
Fig. 2 Power Dissipation vs. Ambient
Temperature
60
600
550
Power dissipation Ptot, Po (mW)
Forward current I F (mA)
50
40
30
20
10
0
- 25
0
25
50
75 80
100
500
Total power dissipation
Output side power dissipation
400
300
200
100
0
- 25
125
Ambient temperature Ta(˚C)
0
25
50
75 80
100
125
Ambient temperature Ta(˚C)
Fig. 3 Forward Current vs. Forward Voltage
Fig. 4 "L-H" Relative Threshold Input
Current vs. Supply Voltage
1.6
Ta = 75˚C
200
50˚C
Forward current I F (mA)
Relative threshold input current I FLH
500
25˚C
100
0˚C
50
- 20˚C
20
10
5
2
Ta = 25˚C
1.4
1.2
Value of VCC =24V assumes 1.
1
0.8
1
0
0.5
1.0
1.5
2.0
2.5
3.0
0.6
15
3.5
Forward voltage VF (V)
24
1
1.2
1.1
I FLH = 1 at Ta=25˚C
1
0.9
25
50
75
Ambient temperature Ta (˚C)
100
O1 low level output voltage VO1L (V)
VCC = 24V
0
27
30
Fig. 6 O1 Low Level Output Voltage vs.
O1 Output Current
1.3
Relative threshold input current I FLH
21
Supply voltage VCC (V)
Fig. 5 "L-H" Relative Threshold Input Current
vs. Ambient Temperature
0.8
- 25
18
Ta = 25˚C
VCC1 = 12V
VCC2 = 12V
IF = 10mA
0.1
0.01
0.001
0.01
0.1
O1 output current IO1 (A)
1
PC928
Fig. 7 O1 Low Level Output Voltage vs.
Ambient Temperature
Fig. 8 O1 Leak Current vs. Ambient
Temperature
0.20
0.15
I O1 = 0.1A
0.10
0.05
0.00
- 25
10
-6
10
-7
10
-8
10
-9
VCC1 = 12V
VCC2 = - 12V
IF = 10mA
O1 leak current I O1L (A)
O1 low level output voltage VO1L (V)
0.25
0
25
50
75
100
- 25
Ambient temperature Ta (˚C )
Fig. 9 O2 High Level Output Voltage vs.
Supply Voltage
25
20
15
10
5
15
18
21
24
27
100
23
IO2 = 0A
22
- 0.1A
21
20
19
- 25
30
0
25
50
75
100
Ambient temperature Ta (˚C )
Fig. 12 O2 Low Level Output Voltage vs.
Ambient Temperature
Fig. 11 O2 Low Level Output Voltage vs.
Output Current
1.3
10
VCC = 24V
Ta = 25˚C
O2 low level output voltage VO2L (V)
O2 low level output voltage VO2L (V)
75
VCC = 24V
IF = 10mA
Supply voltage VCC (V)
1
0.1
0.01
0.01
50
24
Ta = 25˚C
IF = 10mA
IO2 = - 0.1A
30
25
Fig. 10 O2 High Level Output Voltage vs.
Ambient Temperature
O2 high level output voltage V O2H (V)
O2 high level output voltage VO2H (V)
35
0
Ambient temperature Ta (˚C )
0.1
Output current IO2 (A)
1
VCC = 24V
IF = 10mA
1.2
1.1
IO2 = 0.1A
1
0.9
0.8
- 25
0
25
50
75
Ambient temperature Ta (˚C )
100
PC928
Fig. 13 High Level Supply Current vs.
Supply Voltage
Fig. 14 Low Level Supply Current vs.
Supply Voltage
16
IF = 10mA
IF = 0mA
Ta = - 25˚C
Low level supply current I CCL (mA)
High level supply current I CCH (mA)
14
12
10
25˚C
8
80˚C
6
4
15
18
21
24
27
12
25˚C
10
80˚C
8
6
15
30
18
Supply voltage VCC (V)
3
Propagation delay time tPHL, tPLH ( µ s)
Propagation delay time tPHL, tPLH ( µ s)
27
30
2.5
Ta = 25˚C
VCC = 24V
RG = 47Ω
CG = 3 000pF
2.5
tPLH
2
1.5
1
0.5
tPHL
5
10
15
20
1.5
tPLH
1
0.5
tPHL
0
- 25
25
20
15
10
5
0
25
50
25
50
75
100
75
Ambient temperature Ta (˚C )
Fig. 18 O2 Output Fall Time at Protection from Overcurrent/O2 "H-L"
Delay Time at Protection from Overcurrent vs. Ambient temperature
O2 output fall time at protection from overcurrent tpcotf/
O2 "H-L" delay time at protection from overcurrent tpcoHL ( µ s)
VCC = 24V
RG = 47Ω
CG = 3 000pF
IF = 10mA
25
0
Ambient temperature Ta (˚C )
Fig. 17 Overcurrent Detecting Voltage vs.
Ambient Temperature
30
VCC = 24V
RG = 47Ω
CG = 3 000pF
IF = 10mA
2
Forward current IF (mA)
Overcurrent detecting voltage VCTH (V)
24
Fig. 16 Propagation Delay Time vs.
Ambient Temperature
3.5
0
- 25
21
Supply voltage VCC (V)
Fig. 15 Propagation Delay Time vs.
Forward Current
0
0
Ta = - 25˚C
14
100
10 VCC = 24V
IF = 10mA
RG = 47 Ω
C = 3 000pF
8 G
RC = 1k Ω
CP = 1 000pF
t pcotf
6
t pcoHL
4
2
0
- 25
0
25
50
75
Ambient temperature Ta (˚C )
100
PC928
Error signal "H-L" delay time tpcfHL ( µ s)
1.5
VCC = 24V
IF = 10mA
RFS = 1.8k Ω
RG = 47 Ω
CG = 3 000pF
RC = 1k Ω
CP = 1 000pF
1.2
0.9
0.6
0.3
0
- 25
0
25
50
75
100
Fig. 20 O2 Output Voltage at Protection from
Overcurrent vs. Ambient Temperature
O2 output voltage at protection from overcurrent VOE (V)
Fig. 19 Error Signal "H-L" Delay Time vs.
Ambient Temperature
2
VCC = 24V
IF = 10mA
RG = 47 Ω
CG = 3 000pF
RC = 1k Ω
CP = 1 000pF
1.6
1.2
0.8
0.4
0
- 25
Ambient temperature Ta (˚C)
High level error signal current IFSH (A)
Low level error signal voltage VFSL (V)
VCC = 24V
IF = 10mA
IFS = 10mA
0.4 RG = 47Ω
CG = 3 000pF
C = OPEN
0.3
0.2
0.1
25
50
75
100
Ambient temperature Ta (˚C)
Error signal output pulse width ∆ tFS ( µ s)
50
VCC = 24V
IF = 10mA
RFS = 1.8k Ω
40 RG = 47Ω
CG = 3 000pF
RC = 1k Ω
CP = 1 000pF
30
20
10
0
25
50
75
Ambient temperature Ta (˚C)
75
10
-6
100
10
-7
10
-8
10
-9
VCC = 24V
IF = 10mA
VFS = 24V
RG = 47Ω
CG = 3 000pF
VC = 0V
- 25
0
25
50
75
Ambient temperature Ta (˚C)
Fig. 23 Error Signal Output Pulse Width vs.
Ambient Temperature
0
- 25
50
Fig. 22 High Level Error Signal Current vs.
Ambient Temperature
0.5
0
25
Ambient temperature Ta (˚C)
Fig. 21 Low Level Error Signal Voltage vs.
Ambient Temperature
0
- 25
0
100
100
PC928
Overcurrent Detecting Voltage Supply Voltage Characteristics Test Circuit
Fig. 24 Overcurrent Detecting Voltage
vs. Supply Voltage
VCC
Anode
Ta = 25˚C
IF = 10mA
VCC = 24V
20 RG = 47Ω
CG = 3 000pF
RC = 1k Ω
FS = OPEN
15 C = 1 000pF
P
Added resistance=0 Ω
IF
RG
O2
1k Ω
Added resistance
Cathode
0.5k Ω
10
VCC
O1
PC928
Overcurrent detecting voltage VCTH (V)
25
RC
V
VO2
C
5
CP
1.5k Ω
0
15
18
CG
V
FS
21
24
27
30
VC
GND
Supply voltage Vcc (V)
Application Circuit (IGBT Drive for Inverter)
Anode
VCC
Anode
IGBT
RG
O2
(+)
RC
U
Power supply
PC928
TTL, microcomputer, etc.
VCC1 = 12V
+
O1
Cathode
W
V
C
+
FS
GND
VCC2 = 12V
CP
(-)
Feedback to primary side
■ Operations of Shortcircuit Protector Circuit
Anode
Light emitting diode
1
Constant voltage circuit
Anode
2
Cathode
14 GND
V
13 CC
O1
12
11
3
TTL, microcomputer, etc.
PC928
VCC
O2
RG
Amp.
Photodiode
IGBT protector circuit
IGBT
RC
Interface
9
8
10
C
FS
CP
GND
VEE
Feedback to primary side
1. Detection of increase in VCE(sat) of IGBT due to overcurrent by means of C-terminal ( 9 terminal)
2. Reduction of the IGBT gate voltage, and suppression of the collector current
3. Simultaneous issue of signals to indicate the shortcircuit condition (FS signal) from FS terminal to the microcomputer
In the case of instantaneous shortcircuit, run continues.
4. Judgement and processing by the microcomputer
At fault, input to the photocoupler is cut off, and IGBT is turned OFF.