PC928 Shortcircuit Protector Circuit Built-in OPIC Photocoupler Suitable for Inverter-Driving IGBT PC928 ❈ TÜV ( VDE 0884 ) approved type is also available as an option. ■ Outline Dimensions ■ Features 1. Built-in IGBT shortcircuit protector circuit 2. Built-in direct drive circuit for IGBT drive 14 13 (Peak output current ... I O1P , I O2P : MAX. 0.4A) 3. High isolation voltage (Viso : 4 000Vrms ) 12 11 10 9 8 6 7 (Unit : mm) 6.5 PC928 4. Half lead pin pitch (p=1.27 mm) package type 5. Recognized by UL, file NO. E64380 Primary side mark 1 2 3 4 5 ■ Application 9.22 0.35 14 - 0.6 0.26 7.62 3.5 1. IGBT control for inverter drive 12 - 1.27 1.0 1.0 10.0 Internal connection diagram 14 12 11 10 9 8 (Ta=Topr unless otherwise specified) Parameter Symbol Rating *1 Forward current IF 25 Input Reverse voltage VR 6 (Ta = 25˚C) Supply voltage VCC 35 O1 output current IO1 0.1 *4 IO1P 0.4 O1 peak output current IO2 O2 output current 0.1 *4 IO2P 0.4 O2 peak output current Output O1 output voltage VO1 35 *2 Power dissipation PO 500 Overcurrent detecting voltage VC VCC Overcurrent detecting current IC 30 Error signal output voltage VFS VCC Error signal output current IFS 20 *3 Total power dissipation Ptot 550 *5 Isolation voltage Viso 4 000 - 25 to + 80 Operating temperature Topr Storage temperature Tstg - 55 to + 125 Soldering temperature Tsol 260 (for 10 sec) Unit mA V V A A A A V mW V mA V mA mW Vrms ˚C ˚C ˚C Constant voltage circuit ■ Absolute Maximum Ratings 13 1 2 IGBT protector circuit Interface Amp. 3 4 1 2 3 4 5 6 7 Anode Anode Cathode NC NC NC NC 8 9 10 11 12 13 14 FS C GND O2 O1 VCC GND Terminals 4 to 7 : Shortcircuit in element 5 6 7 * "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal processing circuit integrated onto a single chip. Operation truth table is shown on the next page. *1, 2, 3 Decrease in the ambient temperature range of the Absolute Max. Rating : Shown in Figs. 1 and 2. *4 Pulse width<=0.15 µs, Duty ratio=0.01 *5 40 to 60% RH, AC for 1 minute, Ta=25˚C “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” PC928 ■ Electro-optical Characteristics (1) Parameter Input Forward voltage Output Reverse current Terminal capacitance Symbol VF1 VF2 IR Ct Operating supply voltage VCC O1 low level output voltage VO1L O2 high level output voltage VO2H O2 low level output voltage O1 leak current VO2L I O1L High level supply current ICCH Low level supply current ICCL *7 Isolation resistance "Low→High" propagation delay time "High→Low" propagation delay time Rise time Fall time Instantaneous common mode rejection voltage "Output : High level" Instantaneous common mode rejection voltage "Output : Low level" Response time Transfer characteristics "Low→High" threshold input current IFLH RISO tPLH tPHL tr tf CMH CML (Ta=Topr unless otherwise specified) Conditions Ta = 25˚C, IF = 20mA Ta = 25˚C, I F = 0.2mA T a = 25˚C, V R = 4V Ta = 25˚C, V = 0, f = 1kHz Ta = - 10 to60˚C VCC1 = 12V, VCC2 = - 12V IO1 = 0.1A, IF = 10mA *8 VCC = VO1 = 24V, IO2 = - 0.1A IF = 10mA *8 VCC = VO1 = 24V, IO2 = 0.1A, IF = 0mA *8 Ta = 25˚C, VCC = VO1 = 35V, IF = 0mA *8 Ta = 25˚C, VCC = VO1 = 24V, IF = 10mA *8 VCC = VO1 = 24V, IF = 10mA *8 Ta = 25˚C, VCC = VO1 = 24V, IF = 0mA *8 VCC = VO1 = 24V, IF = 0mA *8 Ta = 25˚C, VCC = VO1 = 24V *8 VCC = VO1 = 24V *8 Ta = 25˚C, DC500V, 40 to60% RH Ta = 25˚C, VCC = VO1 = 24V RG = 47Ω , CG = 3 000pF, I F = 10mA *8 Ta = 25˚C, VCC = VO1 = 24V, IF = 10mA VCM = 600V( peak ) , ∆ VO2H = 2.0V *8 Ta = 25˚C, VCC = VO1 = 24V, IF = 0mA VCM = 600V( peak ) , ∆ VO2L = 2.0V *8 MIN. 0.6 15 15 TYP. 1.2 0.9 30 - MAX. 1.4 10 250 30 24 Unit V V µA pF V V Test circuit - - 0.2 0.4 V (1) 20 22 - V (2) 2.0 500 17 19 18 20 7.0 10 2.0 2.0 0.5 0.5 V µA mA mA mA mA mA mA Ω µs µs µs µs (3) (4) 1.2 10 11 1.0 4.0 0.6 5 x 1010 1 x 1011 1.0 1.0 0.2 0.2 - 1 500 - - V/ µ s 1 500 - - V/ µ s ■ Truth Table ON OFF C Input/output Low level High level Low level High level O2 Output High level Low level Low level Low level FS Output High level Low level High level High level (6) (5) - (8) (7) *6 When measuring output and transfer characteristics, connect a bypass capacitor (0.01 µ F or more) between Vcc 13 and GND 14 near the device. *7 I FLH represents forward current when O 2 output goes from "Low" to "High". *8 FS=OPEN, VC =0V Input - For protective operation PC928 *9 *9 Protective output Overcurrent detection ■ Electro-optical Characteristics (2) *10 Parameter Overcurrent detecting voltage Symbol VCTH Overcurrent detecting voltage hysteresis width VCHIS O2 "High→Low" delay time at protection from overcurrent O2 fall time at protection from overcurrent O2 output voltage at protection from overcurrent tPCOHL tPCOtf VOE Error signal output *9 (Ta=Topr unless otherwise specified) Conditions Ta = 25˚C, IF = 10mA VCC = VO1 = 24V, RG = 47Ω CG = 3 000pF, FS = OPEN MIN. TYP. MAX. VCC - VCC - VCC 6.5 6.0 5.5 1 2 3 Unit V Test circuit (9) V Ta = 25˚C VCC = VO1 = 24V, IF = 10mA CG = 3 000pF, RG = 47Ω CP = 1 000pF, RC = 1kΩ FS = OPEN - 4 10 µs 2 5 - µs - - 2 V (10) (13) Low level error signal voltage VFSL Ta = 25˚C, IF = 10mA, IFS = 10mA VCC = VO1 = 24V, RG = 47Ω , C G = 3 000pF, C = OPEN - 0.2 0.4 V (11) High level error signal current IFSH Ta = 25˚C, I F = 10mA, VFS = 24V, VCC = VO1 = 24V, RG = 47Ω , C G = 3 000pF, VC = 0V - - 100 µA (12) - 1 5 µs 20 35 - µs Error signal "High→Low" delay time tPCFHL Error signal output pulse width ∆ tFS Ta = 25˚C, RFS = 1.8kΩ VCC = VO1 = 24V, IF = 10mA CG = 3 000pF, RG = 47Ω CP = 1 000pF, RC = 1kΩ (14) *9 When measuring overcurrent, protective output and error signal output characteristics, connect a bypass capacitor (0.01 µ F or more) between VCC 13 and GND 14 near the device. *10 VCTH represents C-terminal voltage when O 2 output goes from "High" to "Low". Precautions for Operation 1. It is recommended that a capacitor of about 1000pF is added between C-terminal and GND in order to prevent malfunction of C-terminal due to noise. In the case of capacitor added, rise of the detecting voltage is delayed. Thus, use together a resistance of about 1k Ω set between Vcc and C-terminal. The C-terminal rise time varies with the time constant of CR added. Make it clear before use. 2. The light-detecting element used for this product is provided with a parasitic diode between each terminal and GND. When a terminal happens to reach electric potential lower than GND potential even in a moment, malfunction or rupture may result. Design the circuit so that each terminal will be kept at electric potential lower than the GND potential at all times. PC928 ■ Test Circuit Diagram (2) 13 1 2 ↑ IF 12 11 PC928 V VO1L ↑ 13 1 2 IO1 V CC1 ↑ IF VCC2 14 10 12 11 PC928 8 (4) 13 1 2 ↑ IF 12 11 PC928 14 10 13 1 2 VCC ↑ IF V VO2L ↑ IO2 12 9 8 (6) 13 1 2 ↑ IF variable 12 11 PC928 14 10 A I CC 13 1 2 VCC ↑ IF V VO2 12 VCC 11 PC928 14 10 9 3 VCC 14 10 3 8 (5) A I O1L 11 PC928 9 3 VCC 9 3 8 (3) IO2 V VO2H 14 10 9 3 ↑ (1) 9 3 8 8 13 (7) A SW B 1 2 12 11 PC928 14 10 VCC 13 t r = t f = 0.01 µ s VIN Pulse width : 5 µ s Duty ratio=50% 9 3 (8) 1 2 V VO2 8 + 12 RG 11 PC928 14 10 VCC CG VOUT 9 3 8 VCM VCM (Peak) 50% V IN waveform VCM waveform GND CMH , V O2 waveform SW at A, I F = 10mA VO2H tpHL tpLH 90% ∆ VO2H 50% 10% VOUT waveform ∆ VO2L tf tr VO2L GND CM L , V O2 waveform SW at B, I F = 0mA (9) (10) 13 1 2 12 11 PC928 14 10 ↑ IF 3 9 8 RG V VOUT 13 1 2 VCC CG V VCTH 12 11 PC928 14 10 ↑ IF 3 9 8 RG VCC V VOE CG CP VC RL PC928 ■ Test Circuit Diagram (11) (12) 13 1 2 13 1 12 RG PC928 RG 9 V VFSL 11 ↑ IF CG 14 10 3 12 VCC 11 ↑ IF 2 ↓ IFS PC928 14 10 IFSH 8 (13) VFS 9 3 8 VCC CG A (14) 13 1 tr = tf = 0.01µ s VIN Pulse width : 25 µ s Duty ratio=25% 2 13 1 12 RG VCC 11 PC928 14 10 3 9 CG V VOUT RC CP tr = tf = 0.01µ s VIN Pulse width : 25 µ s Duty ratio=25% RC 12 RG 11 14 10 9 V 8 IF (Input current) t pCOTF 90% 50% t pCOHL VOE 10% VO2 (O2 output voltage) 90% C (Detecting terminal) Error detecting threshold voltage (V CTH ) 10% ∆ t FS t pCFHL FS (Error signal output) 50% VCC CG PC928 3 8 2 50% RFS PC928 Fig. 1 Forward Current vs. Ambient Temperature Fig. 2 Power Dissipation vs. Ambient Temperature 60 600 550 Power dissipation Ptot, Po (mW) Forward current I F (mA) 50 40 30 20 10 0 - 25 0 25 50 75 80 100 500 Total power dissipation Output side power dissipation 400 300 200 100 0 - 25 125 Ambient temperature Ta(˚C) 0 25 50 75 80 100 125 Ambient temperature Ta(˚C) Fig. 3 Forward Current vs. Forward Voltage Fig. 4 "L-H" Relative Threshold Input Current vs. Supply Voltage 1.6 Ta = 75˚C 200 50˚C Forward current I F (mA) Relative threshold input current I FLH 500 25˚C 100 0˚C 50 - 20˚C 20 10 5 2 Ta = 25˚C 1.4 1.2 Value of VCC =24V assumes 1. 1 0.8 1 0 0.5 1.0 1.5 2.0 2.5 3.0 0.6 15 3.5 Forward voltage VF (V) 24 1 1.2 1.1 I FLH = 1 at Ta=25˚C 1 0.9 25 50 75 Ambient temperature Ta (˚C) 100 O1 low level output voltage VO1L (V) VCC = 24V 0 27 30 Fig. 6 O1 Low Level Output Voltage vs. O1 Output Current 1.3 Relative threshold input current I FLH 21 Supply voltage VCC (V) Fig. 5 "L-H" Relative Threshold Input Current vs. Ambient Temperature 0.8 - 25 18 Ta = 25˚C VCC1 = 12V VCC2 = 12V IF = 10mA 0.1 0.01 0.001 0.01 0.1 O1 output current IO1 (A) 1 PC928 Fig. 7 O1 Low Level Output Voltage vs. Ambient Temperature Fig. 8 O1 Leak Current vs. Ambient Temperature 0.20 0.15 I O1 = 0.1A 0.10 0.05 0.00 - 25 10 -6 10 -7 10 -8 10 -9 VCC1 = 12V VCC2 = - 12V IF = 10mA O1 leak current I O1L (A) O1 low level output voltage VO1L (V) 0.25 0 25 50 75 100 - 25 Ambient temperature Ta (˚C ) Fig. 9 O2 High Level Output Voltage vs. Supply Voltage 25 20 15 10 5 15 18 21 24 27 100 23 IO2 = 0A 22 - 0.1A 21 20 19 - 25 30 0 25 50 75 100 Ambient temperature Ta (˚C ) Fig. 12 O2 Low Level Output Voltage vs. Ambient Temperature Fig. 11 O2 Low Level Output Voltage vs. Output Current 1.3 10 VCC = 24V Ta = 25˚C O2 low level output voltage VO2L (V) O2 low level output voltage VO2L (V) 75 VCC = 24V IF = 10mA Supply voltage VCC (V) 1 0.1 0.01 0.01 50 24 Ta = 25˚C IF = 10mA IO2 = - 0.1A 30 25 Fig. 10 O2 High Level Output Voltage vs. Ambient Temperature O2 high level output voltage V O2H (V) O2 high level output voltage VO2H (V) 35 0 Ambient temperature Ta (˚C ) 0.1 Output current IO2 (A) 1 VCC = 24V IF = 10mA 1.2 1.1 IO2 = 0.1A 1 0.9 0.8 - 25 0 25 50 75 Ambient temperature Ta (˚C ) 100 PC928 Fig. 13 High Level Supply Current vs. Supply Voltage Fig. 14 Low Level Supply Current vs. Supply Voltage 16 IF = 10mA IF = 0mA Ta = - 25˚C Low level supply current I CCL (mA) High level supply current I CCH (mA) 14 12 10 25˚C 8 80˚C 6 4 15 18 21 24 27 12 25˚C 10 80˚C 8 6 15 30 18 Supply voltage VCC (V) 3 Propagation delay time tPHL, tPLH ( µ s) Propagation delay time tPHL, tPLH ( µ s) 27 30 2.5 Ta = 25˚C VCC = 24V RG = 47Ω CG = 3 000pF 2.5 tPLH 2 1.5 1 0.5 tPHL 5 10 15 20 1.5 tPLH 1 0.5 tPHL 0 - 25 25 20 15 10 5 0 25 50 25 50 75 100 75 Ambient temperature Ta (˚C ) Fig. 18 O2 Output Fall Time at Protection from Overcurrent/O2 "H-L" Delay Time at Protection from Overcurrent vs. Ambient temperature O2 output fall time at protection from overcurrent tpcotf/ O2 "H-L" delay time at protection from overcurrent tpcoHL ( µ s) VCC = 24V RG = 47Ω CG = 3 000pF IF = 10mA 25 0 Ambient temperature Ta (˚C ) Fig. 17 Overcurrent Detecting Voltage vs. Ambient Temperature 30 VCC = 24V RG = 47Ω CG = 3 000pF IF = 10mA 2 Forward current IF (mA) Overcurrent detecting voltage VCTH (V) 24 Fig. 16 Propagation Delay Time vs. Ambient Temperature 3.5 0 - 25 21 Supply voltage VCC (V) Fig. 15 Propagation Delay Time vs. Forward Current 0 0 Ta = - 25˚C 14 100 10 VCC = 24V IF = 10mA RG = 47 Ω C = 3 000pF 8 G RC = 1k Ω CP = 1 000pF t pcotf 6 t pcoHL 4 2 0 - 25 0 25 50 75 Ambient temperature Ta (˚C ) 100 PC928 Error signal "H-L" delay time tpcfHL ( µ s) 1.5 VCC = 24V IF = 10mA RFS = 1.8k Ω RG = 47 Ω CG = 3 000pF RC = 1k Ω CP = 1 000pF 1.2 0.9 0.6 0.3 0 - 25 0 25 50 75 100 Fig. 20 O2 Output Voltage at Protection from Overcurrent vs. Ambient Temperature O2 output voltage at protection from overcurrent VOE (V) Fig. 19 Error Signal "H-L" Delay Time vs. Ambient Temperature 2 VCC = 24V IF = 10mA RG = 47 Ω CG = 3 000pF RC = 1k Ω CP = 1 000pF 1.6 1.2 0.8 0.4 0 - 25 Ambient temperature Ta (˚C) High level error signal current IFSH (A) Low level error signal voltage VFSL (V) VCC = 24V IF = 10mA IFS = 10mA 0.4 RG = 47Ω CG = 3 000pF C = OPEN 0.3 0.2 0.1 25 50 75 100 Ambient temperature Ta (˚C) Error signal output pulse width ∆ tFS ( µ s) 50 VCC = 24V IF = 10mA RFS = 1.8k Ω 40 RG = 47Ω CG = 3 000pF RC = 1k Ω CP = 1 000pF 30 20 10 0 25 50 75 Ambient temperature Ta (˚C) 75 10 -6 100 10 -7 10 -8 10 -9 VCC = 24V IF = 10mA VFS = 24V RG = 47Ω CG = 3 000pF VC = 0V - 25 0 25 50 75 Ambient temperature Ta (˚C) Fig. 23 Error Signal Output Pulse Width vs. Ambient Temperature 0 - 25 50 Fig. 22 High Level Error Signal Current vs. Ambient Temperature 0.5 0 25 Ambient temperature Ta (˚C) Fig. 21 Low Level Error Signal Voltage vs. Ambient Temperature 0 - 25 0 100 100 PC928 Overcurrent Detecting Voltage Supply Voltage Characteristics Test Circuit Fig. 24 Overcurrent Detecting Voltage vs. Supply Voltage VCC Anode Ta = 25˚C IF = 10mA VCC = 24V 20 RG = 47Ω CG = 3 000pF RC = 1k Ω FS = OPEN 15 C = 1 000pF P Added resistance=0 Ω IF RG O2 1k Ω Added resistance Cathode 0.5k Ω 10 VCC O1 PC928 Overcurrent detecting voltage VCTH (V) 25 RC V VO2 C 5 CP 1.5k Ω 0 15 18 CG V FS 21 24 27 30 VC GND Supply voltage Vcc (V) Application Circuit (IGBT Drive for Inverter) Anode VCC Anode IGBT RG O2 (+) RC U Power supply PC928 TTL, microcomputer, etc. VCC1 = 12V + O1 Cathode W V C + FS GND VCC2 = 12V CP (-) Feedback to primary side ■ Operations of Shortcircuit Protector Circuit Anode Light emitting diode 1 Constant voltage circuit Anode 2 Cathode 14 GND V 13 CC O1 12 11 3 TTL, microcomputer, etc. PC928 VCC O2 RG Amp. Photodiode IGBT protector circuit IGBT RC Interface 9 8 10 C FS CP GND VEE Feedback to primary side 1. Detection of increase in VCE(sat) of IGBT due to overcurrent by means of C-terminal ( 9 terminal) 2. Reduction of the IGBT gate voltage, and suppression of the collector current 3. Simultaneous issue of signals to indicate the shortcircuit condition (FS signal) from FS terminal to the microcomputer In the case of instantaneous shortcircuit, run continues. 4. Judgement and processing by the microcomputer At fault, input to the photocoupler is cut off, and IGBT is turned OFF.