TYPICAL PERFORMANCE CURVES APT30GT60BR(G) 600V APT30GT60BR APT30GT60BRG* ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. Thunderbolt IGBT® TO -2 The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. • Low Forward Voltage Drop • High Freq. Switching to 100KHz • Low Tail Current • Ultra Low Leakage Current G C 47 E C • RBSOA and SCSOA Rated G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT30GT60BR(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 64 I C2 Continuous Collector Current @ TC = 110°C 30 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 110 Switching Safe Operating Area @ TJ = 150°C 110A @ 600V Total Power Dissipation Watts 250 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES (VCE = VGE, I C = 700µA, Tj = 25°C) 3 TYP 4 Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 25°C) 1.6 2.0 Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 125°C) 2.8 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 Gate-Emitter Leakage Current (VGE = ±20V) MAX 5 Volts 2.5 50 1000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Units µA nA 6-2008 MIN Rev E Characteristic / Test Conditions 052-6211 Symbol DYNAMIC CHARACTERISTICS Symbol APT30GT60BR(G) Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Total Gate Charge 3 Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) Turn-on Delay Time tr Current Rise Time td(off) Turn-off Delay Time tf Eon1 Capacitance 1600 VGE = 0V, VCE = 25V 150 f = 1 MHz 92 Gate Charge 7.5 VGE = 15V 145 VCE = 300V 10 I C = 30A 60 I C = 30A 4 Eoff Turn-off Switching Energy td(on) Turn-on Delay Time tr Current Rise Time RG = 10Ω TJ = +25°C 5 6 VGE = 15V Turn-off Delay Time I C = 30A Current Fall Time Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy V nC RG = 10Ω 44 55 TJ = +125°C 6 A 12 20 225 80 525 605 600 Inductive Switching (125°C) VCC = 400V UNIT pF 110 15V, L = 100µH,VCE = 600V Current Fall Time Turn-on Switching Energy MAX TJ = 150°C, R G = 10Ω, VGE = VGE = 15V Turn-on Switching Energy (Diode) tf TYP Inductive Switching (25°C) VCC = 400V Eon2 td(off) MIN Test Conditions Characteristic ns µJ 12 20 245 100 570 965 830 TYP ns µJ THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN RθJC Junction to Case (IGBT) .50 RθJC Junction to Case (DIODE) 5.9 N/A WT Package Weight MAX UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 052-6211 Rev E 6-2008 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES V GE = 15V 15 &13V TJ = -55°C 80 70 TJ = 25°C 60 50 TJ = 125°C 40 30 20 10 FIGURE 1, Output Characteristics(TJ = 25°C) 7V 20 60 50 40 30 TJ = 125°C 20 TJ = 25°C 0 0 5 10 15 20 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 125°C) 14 J VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 30A C T = 25°C 0 IC = 60A 3.5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.0 IC = 30A 2.5 2.0 1.5 IC = 15A 1.0 0.5 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 3.5 2.5 1.0 0.5 0 0.90 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 80 0.95 IC = 15A 1.5 1.10 1.00 IC = 30A 2.0 90 1.05 IC = 60A 3.0 1.15 IC, DC COLLECTOR CURRENT(A) 6 40 60 80 100 120 140 160 GATE CHARGE (nC) FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 4.0 VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4.5 20 0 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 6-2008 IC, COLLECTOR CURRENT (A) 70 TJ = -55°C 80 10 8V 40 Rev E 250µs PULSE TEST<0.5 % DUTY CYCLE 90 0 9V 60 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 100 10V 80 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 11V 100 6V 0 120 052-6211 IC, COLLECTOR CURRENT (A) 90 APT30GT60BR(G) 140 IC, COLLECTOR CURRENT (A) 100 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 14 VGE = 15V 12 10 8 6 4 VCE = 400V T = 25°C, or 125°C 2 RJ = 10Ω G 0 APT30GT60BR(G) 300 16 L = 100µH 250 VGE =15V,TJ=25°C 150 100 50 VCE = 400V RG = 10Ω 0 0 VGE =15V,TJ=125°C 200 L = 100µH 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 60 160 RG = 10Ω, L = 100µH, VCE = 400V 0 RG = 10Ω, L = 100µH, VCE = 400V 140 50 TJ = 125°C, VGE = 15V tf, FALL TIME (ns) tr, RISE TIME (ns) 120 40 30 20 G TJ = 125°C 1500 1000 500 TJ = 25°C G 1500 TJ = 125°C 1000 TJ = 25°C 500 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 4500 3000 4000 V = 400V CE V = +15V GE T = 125°C Eon2,60A J 3500 3000 Eoff,60A 1500 Eon2,30A Eoff,30A 1000 Eoff,15A 500 0 Eon2,15A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) V = 400V CE V = +15V GE R = 10Ω 0 0 6-2008 Rev E 052-6211 2000 V = 400V CE V = +15V GE R = 10Ω 2000 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 2500 TJ = 25°C, VGE = 15V 0 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 3000 60 20 0 80 40 TJ = 25 or 125°C,VGE = 15V 10 100 2500 V = 400V CE V = +15V GE R = 10Ω Eon2,60A G 2000 1500 Eoff,60A 1000 Eon2,30A Eoff,15A 500 0 Eoff,30A Eon2,15A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) Cies P C, CAPACITANCE ( F) 1,000 500 Coes 100 APT30GT60BR(G) 120 3,000 Cres 50 100 80 60 40 20 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.50 D = 0.9 0.40 0.7 0.30 0.5 0.20 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 0.3 t1 t2 0.10 0 t 0.1 0.05 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.00245 0.207 0.00548 0.209 0.165 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL Fmax = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 10 5 1 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 10Ω fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 5 15 25 35 45 55 65 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 6-2008 0.0838 50 Rev E Power (watts) RC MODEL 052-6211 Junction temp. (°C) FMAX, OPERATING FREQUENCY (kHz) 140 APT30GT60BR(G) Gate Voltage 10% APT40DQ60 TJ = 125°C td(on) IC V CC 90% V CE Collector Current tr 5% 5% 10% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure21,InductiveSwitchingTestCircuit 90% td(off) TJ = 125°C Gate Voltage tf Collector Voltage 90% 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions TO-247PackageOutline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 15.49 (.610) 16.26 (.640) 1.49 (.059) 2.49 (.098) 6.15 (.242) BSC Collector 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. Rev E 6-2008 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 052-6211 5.38 (.212) 6.20 (.244) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.